图1.4 The foam casting process employed by CYMAT for producing flat panels consists of melting and holding furnaces,the foaming box,and foaming equipment,and a twin-belt caster
图1.5 Manufacturing process for ALPORAS foams
图1.6 Schematic illustration of production of an open-cellular Ni foam
图1.7 Powder metallurgical process for making foamed metals
图2.1 Two-dimensional cellular materials
图2.2 Open &; close cell foams
图2.3 Open cell foams of nickl(a)and aluminum(b)
图2.4 Mean cell size as a function of the relative density for aluminum foams
阅读全文:https://www.20087.com/2008-11/R_2008kongdongcailiaoyingyongyanjiufazBaoGao.html
图2.5 自相似分形多孔材料模拟
图2.6 Typical stress-strain curve of honeycomb
图2.7 Compressive and tensile stress-strain curves for honeycombs
图2.8 正多边形的几何关系
图2.9 n、t/R对(ρ*/ρS)的影响
图2.10 Comparison of relative modulus calculated by different method
图2.11 多孔材料模型
图2.12 代表单元
图2.13 坐标系的旋转
图2.14 An axisymmetric unit cell
图2.15 The influence of R
图2.16 Unit cell of honeycombs
图3.1 泡沫镍的微观结构
图3.2 泡沫镍单轴拉伸应力-应变曲线
图3.3 泡沫镍在四个阶段的变形图
图3.5 泡沫镍互相垂直两个方向拉伸响应的局部放大图
Holes material applied research and development in 2008
图3.6 泡沫镍单轴压缩应力-应变曲线
图3.7 Tensile response of nickel foam at different temperature
图3.8 相对密度对泡沫正则化的弹性模量,剪切模量和体积模量的影响
图3.9 The effect of both relative density and temperature on relative Young’s modulus
图3.10 Effect of both relative density and temperature on relative bulk modulus
图3.11 Effect of both relative density and temperature on relative shear modulus
图3.12 相对密度对弹性极限、屈服极限的影响
图3.13 The effect of both relative density and temperature on elastic strength
图3.14 The effect of both relative density and temperature on plastic strength
图3.15 The comparison between experimental and theoretical curves
图3.16 不同应变率下的力-位移曲线
图3.17 The experiment results of different relative density(LD)
图3.18 The experiment results of different relative density(TD)
图3.19 The theory results of different relative density(LD)
图3.20 1#泡沫陶瓷在两个不同方向受单向压缩的应力-应变曲线
图3.21 1#泡沫陶瓷两个加载方向
2008年中國孔洞材料應用研究發展分析
图3.22 泡沫材料压缩时典型的σ-ε曲线
图3.23 1#泡沫陶瓷压缩形貌图
图3.24 泡沫陶瓷圆形试件以不同的变形速率压缩的力-位移曲线
图3.25 2#泡沫陶瓷方形试件以不同的变形速率压缩的应力-应变曲线
图3.26 2#泡沫陶瓷圆形试件压缩形貌图,箭头处为主裂纹的演化
图4.1 常见的三种正多边形格构
图4.2 孔壁内力及横截面尺寸
图4.3 米字型节点
图4.4 十字型结构的节点
图4.5 带一根斜杆的十字结构
图4.6 (a)蜂窝结构,(b)“Y”字形节点,(c)倒“Y”字形节点
图4.7 例题
图4.8 计算结果
图5.1 The metal foams containing crack
图5.2 The breaking process of close-cell metal foams containing crack
图5.3 The model of close-cell metal foams containing crack
2008 nián zhōngguó kǒngdòng cáiliào yìngyòng yánjiū fāzhǎn fēnxī
图5.5 脆性泡沫破强度限的理论预测与实验结果的比较
图5.6 不同放大倍数的SEM图
图5.7 简化网络模型
图5.8 裂纹扩展模型
图6.1 The imperfections in metal foams
图6.2 Geometry of wavy beam
图6.3 Normalized bulk modulus versus amplitude of wavy imperfections
图6.4 Normalized shear modulus versus amplitude of wavy imperfections
图6.5 本文结果与Warren结果比较
图6.7 Normalized bulk and shear modulus versus missing walls
图6.8 Normalized bulk modulus versus both wavy and missing walls imperfections
图6.9 Normalized shear modulus versus both wavy and missing walls imperfections
图6.10 四边形胞壁弯曲模型,胞元数40×20,w0/L=0
图6.11 轴向载荷
图6.12 节点位移图
图6.13 理论与模拟结果比较
穴の材料は、2008年に研究開発を適用
图6.14 胞元缺省模型
图6.15 不同缺省下三角形胞元的位移分布
图6.16 不同缺省下四边形胞元的位移分布图
图6.17 六边形胞元不同缺省的位移分布图
图6.18 不同胞元的等效弹性模量与胞壁缺省数n之间的模拟关系
图6.19 理论与模拟结果的比较
图6.20 六边形胞元理论与模拟结果比较
图6.21不同胞元模拟结果的比较
图7.1 渗流法制备泡沫金属
略……



京公网安备 11010802027459号